In [1]:
    
import pandas as pd
    
In [2]:
    
import shl_pm
    
    
+-----------------------------------------------+
| Loaded SHL Prediction Module                  |
| Version 0.0.0.1                               |
+-----------------------------------------------+
+-----------------------------------------------+
| SHL Prediction Module User Guide              |
+-----------------------------------------------+
+-----------------------------------------------+
| Key Function I: 
| shl_initialize(in_ccyy_mm='2017-07')
+-----------------------------------------------+
This function takes one input. Run this funciton once, before calling shl_predict_price_k_step()
Inputs:
(1) in_ccyy_mm: the (current) year month for predicting bidding price
    string, i.e. '2017-07'
    
Outputs: N.A.
+-----------------------------------------------+
| Key Function II: 
| shl_predict_price_k_step(in_current_time, in_current_price, in_k_seconds=1, return_value='f_1_step_pred_set_price_rounded')
+-----------------------------------------------+
This function takes four inputs then returns prediciton values in a python list.
Ensure this function is called 'once and only once' for EVERY second with price, starting from '11:29:00'! 
This is to ensure prediction module could capture all actual prices for internal prediction calculation.
Inputs:
(1) in_current_time: current time/second of bidding price
    string, i.e. '11:29:50'
(2) in_current_price : current bidding price
    number/integer/float, i.e. 89400
(3) in_k_seconds : forecast price in the next k seconds
    integer, default value = 1, i.e. 7
(4) return_value : return result of predicted price, or predicted set price = predicted price + dynamic increment
    string, i.e. 89600 predicted price     (return_value = 'f_1_step_pred_price_rounded')
    string, i.e. 89800 predicted set price (return_value = 'f_1_step_pred_set_price_rounded')
Outputs:
(1) Returned restuls in python list
    list of integer , i.e. [89800] (in_k_seconds = 1)
    list of integers, i.e. [89800, 89900, 89900, 90000, 90100, 90100, 90200] (in_k_seconds = 7)
In [ ]:
    
    
In [7]:
    
## which month to predictsimulate?
# shl_sm_parm_ccyy_mm = '2017-04'
# shl_sm_parm_ccyy_mm_offset = 1647
# shl_sm_parm_ccyy_mm = '2017-05'
# shl_sm_parm_ccyy_mm_offset = 1708
# shl_sm_parm_ccyy_mm = '2017-06'
# shl_sm_parm_ccyy_mm_offset = 1769
# shl_sm_parm_ccyy_mm = '2017-07'
# shl_sm_parm_ccyy_mm_offset = 1830
# shl_sm_parm_ccyy_mm = '2017-08'
# shl_sm_parm_ccyy_mm_offset = 1830+61
shl_sm_parm_ccyy_mm = '2017-09'
shl_sm_parm_ccyy_mm_offset = 1830+61*2
# shl_sm_parm_ccyy_mm = '2017-10'
# shl_sm_parm_ccyy_mm_offset = 1830+61*3
# shl_sm_parm_ccyy_mm = '2017-11'
# shl_sm_parm_ccyy_mm_offset = 1830+61*4
# shl_sm_parm_ccyy_mm = '2017-12'
# shl_sm_parm_ccyy_mm_offset = 1830+61*5
#----------------------------------
shl_sm_data = pd.read_csv('shl_sm_data/shl_sm_data.csv') 
shl_sm_data[shl_sm_data['ccyy-mm'] == shl_sm_parm_ccyy_mm ]
    
    Out[7]:
  
    
       
      ccyy-mm 
      time 
      bid-price 
     
  
  
    
      1952 
      2017-09 
      11:29:00 
      90100 
     
    
      1953 
      2017-09 
      11:29:01 
      90100 
     
    
      1954 
      2017-09 
      11:29:02 
      90100 
     
    
      1955 
      2017-09 
      11:29:03 
      90100 
     
    
      1956 
      2017-09 
      11:29:04 
      90100 
     
    
      1957 
      2017-09 
      11:29:05 
      90100 
     
    
      1958 
      2017-09 
      11:29:06 
      90100 
     
    
      1959 
      2017-09 
      11:29:07 
      90100 
     
    
      1960 
      2017-09 
      11:29:08 
      90100 
     
    
      1961 
      2017-09 
      11:29:09 
      90100 
     
    
      1962 
      2017-09 
      11:29:10 
      90100 
     
    
      1963 
      2017-09 
      11:29:11 
      90100 
     
    
      1964 
      2017-09 
      11:29:12 
      90100 
     
    
      1965 
      2017-09 
      11:29:13 
      90100 
     
    
      1966 
      2017-09 
      11:29:14 
      90100 
     
    
      1967 
      2017-09 
      11:29:15 
      90200 
     
    
      1968 
      2017-09 
      11:29:16 
      90200 
     
    
      1969 
      2017-09 
      11:29:17 
      90200 
     
    
      1970 
      2017-09 
      11:29:18 
      90300 
     
    
      1971 
      2017-09 
      11:29:19 
      90300 
     
    
      1972 
      2017-09 
      11:29:20 
      90300 
     
    
      1973 
      2017-09 
      11:29:21 
      90300 
     
    
      1974 
      2017-09 
      11:29:22 
      90300 
     
    
      1975 
      2017-09 
      11:29:23 
      90400 
     
    
      1976 
      2017-09 
      11:29:24 
      90400 
     
    
      1977 
      2017-09 
      11:29:25 
      90400 
     
    
      1978 
      2017-09 
      11:29:26 
      90400 
     
    
      1979 
      2017-09 
      11:29:27 
      90400 
     
    
      1980 
      2017-09 
      11:29:28 
      90400 
     
    
      1981 
      2017-09 
      11:29:29 
      90400 
     
    
      ... 
      ... 
      ... 
      ... 
     
    
      1983 
      2017-09 
      11:29:31 
      90400 
     
    
      1984 
      2017-09 
      11:29:32 
      90400 
     
    
      1985 
      2017-09 
      11:29:33 
      90400 
     
    
      1986 
      2017-09 
      11:29:34 
      90400 
     
    
      1987 
      2017-09 
      11:29:35 
      90400 
     
    
      1988 
      2017-09 
      11:29:36 
      90400 
     
    
      1989 
      2017-09 
      11:29:37 
      90400 
     
    
      1990 
      2017-09 
      11:29:38 
      90400 
     
    
      1991 
      2017-09 
      11:29:39 
      90400 
     
    
      1992 
      2017-09 
      11:29:40 
      90400 
     
    
      1993 
      2017-09 
      11:29:41 
      90400 
     
    
      1994 
      2017-09 
      11:29:42 
      90400 
     
    
      1995 
      2017-09 
      11:29:43 
      90400 
     
    
      1996 
      2017-09 
      11:29:44 
      90400 
     
    
      1997 
      2017-09 
      11:29:45 
      90400 
     
    
      1998 
      2017-09 
      11:29:46 
      90500 
     
    
      1999 
      2017-09 
      11:29:47 
      90500 
     
    
      2000 
      2017-09 
      11:29:48 
      90700 
     
    
      2001 
      2017-09 
      11:29:49 
      90700 
     
    
      2002 
      2017-09 
      11:29:50 
      90700 
     
    
      2003 
      2017-09 
      11:29:51 
      90700 
     
    
      2004 
      2017-09 
      11:29:52 
      90700 
     
    
      2005 
      2017-09 
      11:29:53 
      90800 
     
    
      2006 
      2017-09 
      11:29:54 
      90800 
     
    
      2007 
      2017-09 
      11:29:55 
      90800 
     
    
      2008 
      2017-09 
      11:29:56 
      90900 
     
    
      2009 
      2017-09 
      11:29:57 
      91000 
     
    
      2010 
      2017-09 
      11:29:58 
      91000 
     
    
      2011 
      2017-09 
      11:29:59 
      91200 
     
    
      2012 
      2017-09 
      11:30:00 
      91300 
     
  
61 rows × 3 columns
In [8]:
    
shl_pm.shl_initialize(shl_sm_parm_ccyy_mm)
    
    
+-----------------------------------------------+
| shl_initialize()                              |
+-----------------------------------------------+
shl_global_parm_ccyy_mm           : 2017-09
-------------------------------------------------
shl_global_parm_alpha             : 0.848823804527792
shl_global_parm_beta              : 0.001000000000000
shl_global_parm_gamma             : 0.149949473217226
shl_global_parm_short_weight      : 0.1250000000
shl_global_parm_short_weight_ratio: 0.0000000000
shl_global_parm_sec57_weight      : 0.5000000000
shl_global_parm_month_weight      : 0.9000000000
shl_global_parm_dynamic_increment : 300
-------------------------------------------------
prediction results dataframe: shl_data_pm_1_step
Empty DataFrame
Columns: []
Index: []
prediction results dataframe: shl_data_pm_k_step
Empty DataFrame
Columns: []
Index: []
In [9]:
    
# Upon receiving 11:29:00 second price, to predict till 11:29:49 <- one-step forward price forecasting
for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+50): # use csv data as simulatino
# for i in range(shl_sm_parm_ccyy_mm_offset, shl_sm_parm_ccyy_mm_offset+55): # use csv data as simulatino
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400]  
    shl_sm_prediction_list_local_1 = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],1) # <- one-step forward price forecasting
    print(shl_sm_prediction_list_local_1)
######################################################################################################################
    
    
<<<< Record No.:  1952 >>>>
2017-09
11:29:00
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:00
in_current_price  : 90100.000000
*INFO* At time [ 11:29:00 ] Set shl_global_parm_base_price : 90099 
*INFO* f_current_datetime   : 2017-09 11:29:00 
*INFO* f_current_si         : 0.0023528925 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 425.0087897114 
*INFO* f_1_step_time        : 11:29:01
*INFO* f_1_step_si          : 0.0208894325 
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1953 >>>>
2017-09
11:29:01
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:01
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:01 
*INFO* f_current_si         : 0.0208894325 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 47.8710946610 
*INFO* f_1_step_time        : 11:29:02
*INFO* f_1_step_si          : 0.0355407527 
     previous_pred_les_level  : 425.0087897114
     previous_pred_les_trend  : 0.0000000000
     f_1_step_pred_les_level  : 104.8853365679
     f_1_step_pred_les_trend  : -0.3201234531
     f_1_step_pred_les        : 104.5652131148
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 104.5652131148
     f_1_step_pred_price_inc          : 3.7163263759
     f_1_step_pred_price              : 90102.7163263759
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1954 >>>>
2017-09
11:29:02
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:02
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:02 
*INFO* f_current_si         : 0.0355407527 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 28.1367142004 
*INFO* f_1_step_time        : 11:29:03
*INFO* f_1_step_si          : 0.0418911956 
     previous_pred_les_level  : 104.8853365679
     previous_pred_les_trend  : -0.3201234531
     f_1_step_pred_les_level  : 39.6908838919
     f_1_step_pred_les_trend  : -0.3849977824
     f_1_step_pred_les        : 39.3058861095
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 39.3058861095
     f_1_step_pred_price_inc          : 1.6465705629
     f_1_step_pred_price              : 90100.6465705629
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1955 >>>>
2017-09
11:29:03
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:03
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:03 
*INFO* f_current_si         : 0.0418911956 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 23.8713645170 
*INFO* f_1_step_time        : 11:29:04
*INFO* f_1_step_si          : 0.0492385622 
     previous_pred_les_level  : 39.6908838919
     previous_pred_les_trend  : -0.3849977824
     f_1_step_pred_les_level  : 26.2046967703
     f_1_step_pred_les_trend  : -0.3980989717
     f_1_step_pred_les        : 25.8065977986
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 25.8065977986
     f_1_step_pred_price_inc          : 1.2706797701
     f_1_step_pred_price              : 90100.2706797701
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1956 >>>>
2017-09
11:29:04
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:04
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:04 
*INFO* f_current_si         : 0.0492385622 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 20.3092851604 
*INFO* f_1_step_time        : 11:29:05
*INFO* f_1_step_si          : 0.0488651959 
     previous_pred_les_level  : 26.2046967703
     previous_pred_les_trend  : -0.3980989717
     f_1_step_pred_les_level  : 21.1403479703
     f_1_step_pred_les_trend  : -0.4027652215
     f_1_step_pred_les        : 20.7375827488
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 20.7375827488
     f_1_step_pred_price_inc          : 1.0133460440
     f_1_step_pred_price              : 90100.0133460440
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1957 >>>>
2017-09
11:29:05
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:05
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:05 
*INFO* f_current_si         : 0.0488651959 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 20.4644631225 
*INFO* f_1_step_time        : 11:29:06
*INFO* f_1_step_si          : 0.0817093781 
     previous_pred_les_level  : 21.1403479703
     previous_pred_les_trend  : -0.4027652215
     f_1_step_pred_les_level  : 20.5057523085
     f_1_step_pred_les_trend  : -0.4029970520
     f_1_step_pred_les        : 20.1027552566
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 20.1027552566
     f_1_step_pred_price_inc          : 1.6425836295
     f_1_step_pred_price              : 90100.6425836295
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1958 >>>>
2017-09
11:29:06
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:06
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:06 
*INFO* f_current_si         : 0.0817093781 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 12.2384972645 
*INFO* f_1_step_time        : 11:29:07
*INFO* f_1_step_si          : 0.0981591570 
     previous_pred_les_level  : 20.5057523085
     previous_pred_les_trend  : -0.4029970520
     f_1_step_pred_les_level  : 13.4273858680
     f_1_step_pred_les_trend  : -0.4096724214
     f_1_step_pred_les        : 13.0177134466
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 13.0177134466
     f_1_step_pred_price_inc          : 1.2778077782
     f_1_step_pred_price              : 90100.2778077782
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1959 >>>>
2017-09
11:29:07
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:07
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:07 
*INFO* f_current_si         : 0.0981591570 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 10.1875365517 
*INFO* f_1_step_time        : 11:29:08
*INFO* f_1_step_si          : 0.1399015190 
     previous_pred_les_level  : 13.4273858680
     previous_pred_les_trend  : -0.4096724214
     f_1_step_pred_les_level  : 10.6153919272
     f_1_step_pred_les_trend  : -0.4120747429
     f_1_step_pred_les        : 10.2033171843
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 10.2033171843
     f_1_step_pred_price_inc          : 1.4274595730
     f_1_step_pred_price              : 90100.4274595730
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1960 >>>>
2017-09
11:29:08
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:08
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:08 
*INFO* f_current_si         : 0.1399015190 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 7.1478852204 
*INFO* f_1_step_time        : 11:29:09
*INFO* f_1_step_si          : 0.2029073163 
     previous_pred_les_level  : 10.6153919272
     previous_pred_les_trend  : -0.4120747429
     f_1_step_pred_les_level  : 7.6097938002
     f_1_step_pred_les_trend  : -0.4146682663
     f_1_step_pred_les        : 7.1951255339
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 7.1951255339
     f_1_step_pred_price_inc          : 1.4599436125
     f_1_step_pred_price              : 90100.4599436125
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1961 >>>>
2017-09
11:29:09
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:09
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:09 
*INFO* f_current_si         : 0.2029073163 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 4.9283585149 
*INFO* f_1_step_time        : 11:29:10
*INFO* f_1_step_si          : 0.2371406695 
     previous_pred_les_level  : 7.6097938002
     previous_pred_les_trend  : -0.4146682663
     f_1_step_pred_les_level  : 5.2710397289
     f_1_step_pred_les_trend  : -0.4165923521
     f_1_step_pred_les        : 4.8544473768
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 4.8544473768
     f_1_step_pred_price_inc          : 1.1511869008
     f_1_step_pred_price              : 90100.1511869008
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1962 >>>>
2017-09
11:29:10
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:10
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:10 
*INFO* f_current_si         : 0.2371406695 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 4.2169063716 
*INFO* f_1_step_time        : 11:29:11
*INFO* f_1_step_si          : 0.2926460055 
     previous_pred_les_level  : 5.2710397289
     previous_pred_les_trend  : -0.4165923521
     f_1_step_pred_les_level  : 4.3132873952
     f_1_step_pred_les_trend  : -0.4171335121
     f_1_step_pred_les        : 3.8961538831
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 3.8961538831
     f_1_step_pred_price_inc          : 1.1401938708
     f_1_step_pred_price              : 90100.1401938708
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1963 >>>>
2017-09
11:29:11
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:11
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:11 
*INFO* f_current_si         : 0.2926460055 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 3.4170977260 
*INFO* f_1_step_time        : 11:29:12
*INFO* f_1_step_si          : 0.3408875008 
     previous_pred_les_level  : 4.3132873952
     previous_pred_les_trend  : -0.4171335121
     f_1_step_pred_les_level  : 3.4895196133
     f_1_step_pred_les_trend  : -0.4175401463
     f_1_step_pred_les        : 3.0719794670
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 3.0719794670
     f_1_step_pred_price_inc          : 1.0471994029
     f_1_step_pred_price              : 90100.0471994029
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1964 >>>>
2017-09
11:29:12
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:12
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:12 
*INFO* f_current_si         : 0.3408875008 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 2.9335191163 
*INFO* f_1_step_time        : 11:29:13
*INFO* f_1_step_si          : 0.3574878850 
     previous_pred_les_level  : 3.4895196133
     previous_pred_les_trend  : -0.4175401463
     f_1_step_pred_les_level  : 2.9544510254
     f_1_step_pred_les_trend  : -0.4176576748
     f_1_step_pred_les        : 2.5367933506
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 2.5367933506
     f_1_step_pred_price_inc          : 0.9068728897
     f_1_step_pred_price              : 90099.9068728897
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1965 >>>>
2017-09
11:29:13
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:13
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:13 
*INFO* f_current_si         : 0.3574878850 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 2.7972975921 
*INFO* f_1_step_time        : 11:29:14
*INFO* f_1_step_si          : 0.3755849903 
     previous_pred_les_level  : 2.9544510254
     previous_pred_les_trend  : -0.4176576748
     f_1_step_pred_les_level  : 2.7579155520
     f_1_step_pred_les_trend  : -0.4174365526
     f_1_step_pred_les        : 2.3404789994
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 2.3404789994
     f_1_step_pred_price_inc          : 0.8790487824
     f_1_step_pred_price              : 90099.8790487824
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1966 >>>>
2017-09
11:29:14
90100
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:14
in_current_price  : 90100.000000
*INFO* f_current_datetime   : 2017-09 11:29:14 
*INFO* f_current_si         : 0.3755849903 
*INFO* f_current_price4pm   : 1 
*INFO* f_current_price4pmsi : 2.6625132147 
*INFO* f_1_step_time        : 11:29:15
*INFO* f_1_step_si          : 0.4038575154 
     previous_pred_les_level  : 2.7579155520
     previous_pred_les_trend  : -0.4174365526
     f_1_step_pred_les_level  : 2.6138293072
     f_1_step_pred_les_trend  : -0.4171632023
     f_1_step_pred_les        : 2.1966661050
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 2.1966661050
     f_1_step_pred_price_inc          : 0.8871401154
     f_1_step_pred_price              : 90099.8871401154
     f_1_step_pred_price_rounded      : 90100
     f_1_step_pred_set_price_rounded  : 90400
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90400]
[90400]
<<<< Record No.:  1967 >>>>
2017-09
11:29:15
90200
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:15
in_current_price  : 90200.000000
*INFO* f_current_datetime   : 2017-09 11:29:15 
*INFO* f_current_si         : 0.4038575154 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 250.0882022419 
*INFO* f_1_step_time        : 11:29:16
*INFO* f_1_step_si          : 0.4231287374 
     previous_pred_les_level  : 2.6138293072
     previous_pred_les_trend  : -0.4171632023
     f_1_step_pred_les_level  : 212.6129029189
     f_1_step_pred_les_trend  : -0.2067469654
     f_1_step_pred_les        : 212.4061559535
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 212.4061559535
     f_1_step_pred_price_inc          : 89.8751485897
     f_1_step_pred_price              : 90188.8751485897
     f_1_step_pred_price_rounded      : 90200
     f_1_step_pred_set_price_rounded  : 90500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90500]
[90500]
<<<< Record No.:  1968 >>>>
2017-09
11:29:16
90200
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:16
in_current_price  : 90200.000000
*INFO* f_current_datetime   : 2017-09 11:29:16 
*INFO* f_current_si         : 0.4231287374 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 238.6980393128 
*INFO* f_1_step_time        : 11:29:17
*INFO* f_1_step_si          : 0.4613990996 
     previous_pred_les_level  : 212.6129029189
     previous_pred_les_trend  : -0.2067469654
     f_1_step_pred_les_level  : 234.7233324147
     f_1_step_pred_les_trend  : -0.1844297890
     f_1_step_pred_les        : 234.5389026257
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 234.5389026257
     f_1_step_pred_price_inc          : 108.2160384941
     f_1_step_pred_price              : 90207.2160384941
     f_1_step_pred_price_rounded      : 90200
     f_1_step_pred_set_price_rounded  : 90500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90500]
[90500]
<<<< Record No.:  1969 >>>>
2017-09
11:29:17
90200
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:17
in_current_price  : 90200.000000
*INFO* f_current_datetime   : 2017-09 11:29:17 
*INFO* f_current_si         : 0.4613990996 
*INFO* f_current_price4pm   : 101 
*INFO* f_current_price4pmsi : 218.8994302032 
*INFO* f_1_step_time        : 11:29:18
*INFO* f_1_step_si          : 0.4890396813 
     previous_pred_les_level  : 234.7233324147
     previous_pred_les_trend  : -0.1844297890
     f_1_step_pred_les_level  : 221.2637461432
     f_1_step_pred_les_trend  : -0.1977049455
     f_1_step_pred_les        : 221.0660411977
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 221.0660411977
     f_1_step_pred_price_inc          : 108.1100663347
     f_1_step_pred_price              : 90207.1100663347
     f_1_step_pred_price_rounded      : 90200
     f_1_step_pred_set_price_rounded  : 90500
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90500]
[90500]
<<<< Record No.:  1970 >>>>
2017-09
11:29:18
90300
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:18
in_current_price  : 90300.000000
*INFO* f_current_datetime   : 2017-09 11:29:18 
*INFO* f_current_si         : 0.4890396813 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 411.0095922351 
*INFO* f_1_step_time        : 11:29:19
*INFO* f_1_step_si          : 0.5080889033 
     previous_pred_les_level  : 221.2637461432
     previous_pred_les_trend  : -0.1977049455
     f_1_step_pred_les_level  : 382.2946488348
     f_1_step_pred_les_trend  : -0.0364763378
     f_1_step_pred_les        : 382.2581724969
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 382.2581724969
     f_1_step_pred_price_inc          : 194.2211356228
     f_1_step_pred_price              : 90293.2211356228
     f_1_step_pred_price_rounded      : 90300
     f_1_step_pred_set_price_rounded  : 90600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90600]
[90600]
<<<< Record No.:  1971 >>>>
2017-09
11:29:19
90300
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:19
in_current_price  : 90300.000000
*INFO* f_current_datetime   : 2017-09 11:29:19 
*INFO* f_current_si         : 0.5080889033 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 395.6000587964 
*INFO* f_1_step_time        : 11:29:20
*INFO* f_1_step_si          : 0.5288548106 
     previous_pred_les_level  : 382.2946488348
     previous_pred_les_trend  : -0.0364763378
     f_1_step_pred_les_level  : 393.5830831852
     f_1_step_pred_les_trend  : -0.0251514271
     f_1_step_pred_les        : 393.5579317581
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 393.5579317581
     f_1_step_pred_price_inc          : 208.1350054453
     f_1_step_pred_price              : 90307.1350054453
     f_1_step_pred_price_rounded      : 90300
     f_1_step_pred_set_price_rounded  : 90600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90600]
[90600]
<<<< Record No.:  1972 >>>>
2017-09
11:29:20
90300
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:20
in_current_price  : 90300.000000
*INFO* f_current_datetime   : 2017-09 11:29:20 
*INFO* f_current_si         : 0.5288548106 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 380.0665059398 
*INFO* f_1_step_time        : 11:29:21
*INFO* f_1_step_si          : 0.5649603971 
     previous_pred_les_level  : 393.5830831852
     previous_pred_les_trend  : -0.0251514271
     f_1_step_pred_les_level  : 382.1060883665
     f_1_step_pred_les_trend  : -0.0366032705
     f_1_step_pred_les        : 382.0694850960
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 382.0694850960
     f_1_step_pred_price_inc          : 215.8541280182
     f_1_step_pred_price              : 90314.8541280182
     f_1_step_pred_price_rounded      : 90300
     f_1_step_pred_set_price_rounded  : 90600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90600]
[90600]
<<<< Record No.:  1973 >>>>
2017-09
11:29:21
90300
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:21
in_current_price  : 90300.000000
*INFO* f_current_datetime   : 2017-09 11:29:21 
*INFO* f_current_si         : 0.5649603971 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 355.7771501030 
*INFO* f_1_step_time        : 11:29:22
*INFO* f_1_step_si          : 0.5754012825 
     previous_pred_les_level  : 382.1060883665
     previous_pred_les_trend  : -0.0366032705
     f_1_step_pred_les_level  : 359.7519252773
     f_1_step_pred_les_trend  : -0.0589208303
     f_1_step_pred_les        : 359.6930044470
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 359.6930044470
     f_1_step_pred_price_inc          : 206.9678160688
     f_1_step_pred_price              : 90305.9678160688
     f_1_step_pred_price_rounded      : 90300
     f_1_step_pred_set_price_rounded  : 90600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90600]
[90600]
<<<< Record No.:  1974 >>>>
2017-09
11:29:22
90300
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:22
in_current_price  : 90300.000000
*INFO* f_current_datetime   : 2017-09 11:29:22 
*INFO* f_current_si         : 0.5754012825 
*INFO* f_current_price4pm   : 201 
*INFO* f_current_price4pmsi : 349.3214320327 
*INFO* f_1_step_time        : 11:29:23
*INFO* f_1_step_si          : 0.5861877846 
     previous_pred_les_level  : 359.7519252773
     previous_pred_les_trend  : -0.0589208303
     f_1_step_pred_les_level  : 350.8893668914
     f_1_step_pred_les_trend  : -0.0677244679
     f_1_step_pred_les        : 350.8216424235
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 350.8216424235
     f_1_step_pred_price_inc          : 205.6473613678
     f_1_step_pred_price              : 90304.6473613678
     f_1_step_pred_price_rounded      : 90300
     f_1_step_pred_set_price_rounded  : 90600
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90600]
[90600]
<<<< Record No.:  1975 >>>>
2017-09
11:29:23
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:23
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:23 
*INFO* f_current_si         : 0.5861877846 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 513.4873293152 
*INFO* f_1_step_time        : 11:29:24
*INFO* f_1_step_si          : 0.6135904893 
     previous_pred_les_level  : 350.8893668914
     previous_pred_les_trend  : -0.0677244679
     f_1_step_pred_les_level  : 488.8961496371
     f_1_step_pred_les_trend  : 0.0703500393
     f_1_step_pred_les        : 488.9664996764
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 488.9664996764
     f_1_step_pred_price_inc          : 300.0251937668
     f_1_step_pred_price              : 90399.0251937668
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1976 >>>>
2017-09
11:29:24
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:24
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:24 
*INFO* f_current_si         : 0.6135904893 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 490.5551915650 
*INFO* f_1_step_time        : 11:29:25
*INFO* f_1_step_si          : 0.6521912336 
     previous_pred_les_level  : 488.8961496371
     previous_pred_les_trend  : 0.0703500393
     f_1_step_pred_les_level  : 490.3150191695
     f_1_step_pred_les_trend  : 0.0716985588
     f_1_step_pred_les        : 490.3867177283
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 490.3867177283
     f_1_step_pred_price_inc          : 319.8259183644
     f_1_step_pred_price              : 90418.8259183644
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1977 >>>>
2017-09
11:29:25
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:25
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:25 
*INFO* f_current_si         : 0.6521912336 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 461.5210761876 
*INFO* f_1_step_time        : 11:29:26
*INFO* f_1_step_si          : 0.6684637421 
     previous_pred_les_level  : 490.3150191695
     previous_pred_les_trend  : 0.0716985588
     f_1_step_pred_les_level  : 465.8848740556
     f_1_step_pred_les_trend  : 0.0471967151
     f_1_step_pred_les        : 465.9320707707
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 465.9320707707
     f_1_step_pred_price_inc          : 311.4586956111
     f_1_step_pred_price              : 90410.4586956111
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1978 >>>>
2017-09
11:29:26
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:26
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:26 
*INFO* f_current_si         : 0.6684637421 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 450.2862025631 
*INFO* f_1_step_time        : 11:29:27
*INFO* f_1_step_si          : 0.6877341370 
     previous_pred_les_level  : 465.8848740556
     previous_pred_les_trend  : 0.0471967151
     f_1_step_pred_les_level  : 452.6514853936
     f_1_step_pred_les_trend  : 0.0339161298
     f_1_step_pred_les        : 452.6854015234
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 452.6854015234
     f_1_step_pred_price_inc          : 311.3272039491
     f_1_step_pred_price              : 90410.3272039491
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1979 >>>>
2017-09
11:29:27
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:27
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:27 
*INFO* f_current_si         : 0.6877341370 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 437.6691279469 
*INFO* f_1_step_time        : 11:29:28
*INFO* f_1_step_si          : 0.7187130127 
     previous_pred_les_level  : 452.6514853936
     previous_pred_les_trend  : 0.0339161298
     f_1_step_pred_les_level  : 439.9392310563
     f_1_step_pred_les_trend  : 0.0211699593
     f_1_step_pred_les        : 439.9604010156
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 439.9604010156
     f_1_step_pred_price_inc          : 316.2052652726
     f_1_step_pred_price              : 90415.2052652726
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1980 >>>>
2017-09
11:29:28
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:28
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:28 
*INFO* f_current_si         : 0.7187130127 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 418.8041606187 
*INFO* f_1_step_time        : 11:29:29
*INFO* f_1_step_si          : 0.7326749715 
     previous_pred_les_level  : 439.9392310563
     previous_pred_les_trend  : 0.0211699593
     f_1_step_pred_les_level  : 422.0024805524
     f_1_step_pred_les_trend  : 0.0032120388
     f_1_step_pred_les        : 422.0056925912
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 422.0056925912
     f_1_step_pred_price_inc          : 309.1930087911
     f_1_step_pred_price              : 90408.1930087911
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1981 >>>>
2017-09
11:29:29
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:29
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:29 
*INFO* f_current_si         : 0.7326749715 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 410.8233687644 
*INFO* f_1_step_time        : 11:29:30
*INFO* f_1_step_si          : 0.7733932183 
     previous_pred_les_level  : 422.0024805524
     previous_pred_les_trend  : 0.0032120388
     f_1_step_pred_les_level  : 412.5138699371
     f_1_step_pred_les_trend  : -0.0062797838
     f_1_step_pred_les        : 412.5075901532
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 412.5075901532
     f_1_step_pred_price_inc          : 319.0305727232
     f_1_step_pred_price              : 90418.0305727232
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1982 >>>>
2017-09
11:29:30
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:30
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:30 
*INFO* f_current_si         : 0.7733932183 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 389.1939997357 
*INFO* f_1_step_time        : 11:29:31
*INFO* f_1_step_si          : 0.7887254294 
     previous_pred_les_level  : 412.5138699371
     previous_pred_les_trend  : -0.0062797838
     f_1_step_pred_les_level  : 392.7184596378
     f_1_step_pred_les_trend  : -0.0260689143
     f_1_step_pred_les        : 392.6923907235
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 392.6923907235
     f_1_step_pred_price_inc          : 309.7264745108
     f_1_step_pred_price              : 90408.7264745108
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1983 >>>>
2017-09
11:29:31
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:31
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:31 
*INFO* f_current_si         : 0.7887254294 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 381.6283699818 
*INFO* f_1_step_time        : 11:29:32
*INFO* f_1_step_si          : 0.8130073876 
     previous_pred_les_level  : 392.7184596378
     previous_pred_les_trend  : -0.0260689143
     f_1_step_pred_les_level  : 383.3009865442
     f_1_step_pred_les_trend  : -0.0354603185
     f_1_step_pred_les        : 383.2655262256
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 383.2655262256
     f_1_step_pred_price_inc          : 311.5977042215
     f_1_step_pred_price              : 90410.5977042215
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1984 >>>>
2017-09
11:29:32
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:32
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:32 
*INFO* f_current_si         : 0.8130073876 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 370.2303381283 
*INFO* f_1_step_time        : 11:29:33
*INFO* f_1_step_si          : 0.8322837182 
     previous_pred_les_level  : 383.3009865442
     previous_pred_les_trend  : -0.0354603185
     f_1_step_pred_les_level  : 372.2009482721
     f_1_step_pred_les_trend  : -0.0465248965
     f_1_step_pred_les        : 372.1544233756
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 372.1544233756
     f_1_step_pred_price_inc          : 309.7380672196
     f_1_step_pred_price              : 90408.7380672196
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1985 >>>>
2017-09
11:29:33
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:33
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:33 
*INFO* f_current_si         : 0.8322837182 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 361.6555189409 
*INFO* f_1_step_time        : 11:29:34
*INFO* f_1_step_si          : 0.8619636567 
     previous_pred_les_level  : 372.2009482721
     previous_pred_les_trend  : -0.0465248965
     f_1_step_pred_les_level  : 363.2427033700
     f_1_step_pred_les_trend  : -0.0554366165
     f_1_step_pred_les        : 363.1872667535
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 363.1872667535
     f_1_step_pred_price_inc          : 313.0542245286
     f_1_step_pred_price              : 90412.0542245286
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1986 >>>>
2017-09
11:29:34
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:34
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:34 
*INFO* f_current_si         : 0.8619636567 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 349.2026579658 
*INFO* f_1_step_time        : 11:29:35
*INFO* f_1_step_si          : 0.9193121258 
     previous_pred_les_level  : 363.2427033700
     previous_pred_les_trend  : -0.0554366165
     f_1_step_pred_les_level  : 351.3167979175
     f_1_step_pred_les_trend  : -0.0673070853
     f_1_step_pred_les        : 351.2494908322
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 351.2494908322
     f_1_step_pred_price_inc          : 322.9079160898
     f_1_step_pred_price              : 90421.9079160898
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1987 >>>>
2017-09
11:29:35
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:35
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:35 
*INFO* f_current_si         : 0.9193121258 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 327.4187205466 
*INFO* f_1_step_time        : 11:29:36
*INFO* f_1_step_si          : 0.9493202485 
     previous_pred_les_level  : 351.3167979175
     previous_pred_les_trend  : -0.0673070853
     f_1_step_pred_les_level  : 331.0213657336
     f_1_step_pred_les_trend  : -0.0875352104
     f_1_step_pred_les        : 330.9338305231
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 330.9338305231
     f_1_step_pred_price_inc          : 314.1621862429
     f_1_step_pred_price              : 90413.1621862429
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1988 >>>>
2017-09
11:29:36
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:36
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:36 
*INFO* f_current_si         : 0.9493202485 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 317.0689769470 
*INFO* f_1_step_time        : 11:29:37
*INFO* f_1_step_si          : 0.9783465150 
     previous_pred_les_level  : 331.0213657336
     previous_pred_les_trend  : -0.0875352104
     f_1_step_pred_les_level  : 319.1650127614
     f_1_step_pred_les_trend  : -0.0993040282
     f_1_step_pred_les        : 319.0657087333
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 319.0657087333
     f_1_step_pred_price_inc          : 312.1568242099
     f_1_step_pred_price              : 90411.1568242099
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1989 >>>>
2017-09
11:29:37
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:37
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:37 
*INFO* f_current_si         : 0.9783465150 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 307.6619534806 
*INFO* f_1_step_time        : 11:29:38
*INFO* f_1_step_si          : 0.9994757142 
     previous_pred_les_level  : 319.1650127614
     previous_pred_les_trend  : -0.0993040282
     f_1_step_pred_les_level  : 309.3859298138
     f_1_step_pred_les_trend  : -0.1089838071
     f_1_step_pred_les        : 309.2769460067
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 309.2769460067
     f_1_step_pred_price_inc          : 309.1147964988
     f_1_step_pred_price              : 90408.1147964988
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1990 >>>>
2017-09
11:29:38
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:38
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:38 
*INFO* f_current_si         : 0.9994757142 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 301.1578928036 
*INFO* f_1_step_time        : 11:29:39
*INFO* f_1_step_si          : 1.0355575847 
     previous_pred_les_level  : 309.3859298138
     previous_pred_les_trend  : -0.1089838071
     f_1_step_pred_les_level  : 302.3853003777
     f_1_step_pred_les_trend  : -0.1158754527
     f_1_step_pred_les        : 302.2694249250
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 302.2694249250
     f_1_step_pred_price_inc          : 313.0173956139
     f_1_step_pred_price              : 90412.0173956139
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1991 >>>>
2017-09
11:29:39
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:39
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:39 
*INFO* f_current_si         : 1.0355575847 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 290.6646664924 
*INFO* f_1_step_time        : 11:29:40
*INFO* f_1_step_si          : 1.0759763027 
     previous_pred_les_level  : 302.3853003777
     previous_pred_les_trend  : -0.1158754527
     f_1_step_pred_les_level  : 292.4190297216
     f_1_step_pred_les_trend  : -0.1257258479
     f_1_step_pred_les        : 292.2933038737
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 292.2933038737
     f_1_step_pred_price_inc          : 314.5006684193
     f_1_step_pred_price              : 90413.5006684194
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1992 >>>>
2017-09
11:29:40
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:40
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:40 
*INFO* f_current_si         : 1.0759763027 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 279.7459379280 
*INFO* f_1_step_time        : 11:29:41
*INFO* f_1_step_si          : 1.1108416381 
     previous_pred_les_level  : 292.4190297216
     previous_pred_les_trend  : -0.1257258479
     f_1_step_pred_les_level  : 281.6428009749
     f_1_step_pred_les_trend  : -0.1363763508
     f_1_step_pred_les        : 281.5064246241
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 281.5064246241
     f_1_step_pred_price_inc          : 312.7090578667
     f_1_step_pred_price              : 90411.7090578667
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1993 >>>>
2017-09
11:29:41
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:41
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:41 
*INFO* f_current_si         : 1.1108416381 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 270.9657161513 
*INFO* f_1_step_time        : 11:29:42
*INFO* f_1_step_si          : 1.1660037147 
     previous_pred_les_level  : 281.6428009749
     previous_pred_les_trend  : -0.1363763508
     f_1_step_pred_les_level  : 272.5592203558
     f_1_step_pred_les_trend  : -0.1453235551
     f_1_step_pred_les        : 272.4138968007
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 272.4138968007
     f_1_step_pred_price_inc          : 317.6356156148
     f_1_step_pred_price              : 90416.6356156148
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1994 >>>>
2017-09
11:29:42
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:42
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:42 
*INFO* f_current_si         : 1.1660037147 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 258.1466904406 
*INFO* f_1_step_time        : 11:29:43
*INFO* f_1_step_si          : 1.2765898950 
     previous_pred_les_level  : 272.5592203558
     previous_pred_les_trend  : -0.1453235551
     f_1_step_pred_les_level  : 260.3035524181
     f_1_step_pred_les_trend  : -0.1574338995
     f_1_step_pred_les        : 260.1461185186
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 260.1461185186
     f_1_step_pred_price_inc          : 332.0999061146
     f_1_step_pred_price              : 90431.0999061146
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1995 >>>>
2017-09
11:29:43
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:43
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:43 
*INFO* f_current_si         : 1.2765898950 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 235.7844137634 
*INFO* f_1_step_time        : 11:29:44
*INFO* f_1_step_si          : 1.3892040979 
     previous_pred_les_level  : 260.3035524181
     previous_pred_les_trend  : -0.1574338995
     f_1_step_pred_les_level  : 239.4673236035
     f_1_step_pred_les_trend  : -0.1781126944
     f_1_step_pred_les        : 239.2892109091
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 239.2892109091
     f_1_step_pred_price_inc          : 332.4215523794
     f_1_step_pred_price              : 90431.4215523794
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1996 >>>>
2017-09
11:29:44
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:44
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:44 
*INFO* f_current_si         : 1.3892040979 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 216.6708264494 
*INFO* f_1_step_time        : 11:29:45
*INFO* f_1_step_si          : 1.4455133373 
     previous_pred_les_level  : 239.4673236035
     previous_pred_les_trend  : -0.1781126944
     f_1_step_pred_les_level  : 220.0901877598
     f_1_step_pred_les_trend  : -0.1973117175
     f_1_step_pred_les        : 219.8928760422
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 219.8928760422
     f_1_step_pred_price_inc          : 317.8580850998
     f_1_step_pred_price              : 90416.8580850998
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1997 >>>>
2017-09
11:29:45
90400
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:45
in_current_price  : 90400.000000
*INFO* f_current_datetime   : 2017-09 11:29:45 
*INFO* f_current_si         : 1.4455133373 
*INFO* f_current_price4pm   : 301 
*INFO* f_current_price4pmsi : 208.2305242225 
*INFO* f_1_step_time        : 11:29:46
*INFO* f_1_step_si          : 1.5735144860 
     previous_pred_les_level  : 220.0901877598
     previous_pred_les_trend  : -0.1973117175
     f_1_step_pred_les_level  : 209.9935942009
     f_1_step_pred_les_trend  : -0.2072109994
     f_1_step_pred_les        : 209.7863832015
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 209.7863832015
     f_1_step_pred_price_inc          : 330.1019129355
     f_1_step_pred_price              : 90429.1019129355
     f_1_step_pred_price_rounded      : 90400
     f_1_step_pred_set_price_rounded  : 90700
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90700]
[90700]
<<<< Record No.:  1998 >>>>
2017-09
11:29:46
90500
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:46
in_current_price  : 90500.000000
*INFO* f_current_datetime   : 2017-09 11:29:46 
*INFO* f_current_si         : 1.5735144860 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 254.8435388202 
*INFO* f_1_step_time        : 11:29:47
*INFO* f_1_step_si          : 1.6469907093 
     previous_pred_les_level  : 209.9935942009
     previous_pred_les_trend  : -0.2072109994
     f_1_step_pred_les_level  : 248.0319694549
     f_1_step_pred_les_trend  : -0.1689654131
     f_1_step_pred_les        : 247.8630040418
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 247.8630040418
     f_1_step_pred_price_inc          : 408.2280648447
     f_1_step_pred_price              : 90507.2280648447
     f_1_step_pred_price_rounded      : 90500
     f_1_step_pred_set_price_rounded  : 90800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90800]
[90800]
<<<< Record No.:  1999 >>>>
2017-09
11:29:47
90500
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:47
in_current_price  : 90500.000000
*INFO* f_current_datetime   : 2017-09 11:29:47 
*INFO* f_current_si         : 1.6469907093 
*INFO* f_current_price4pm   : 401 
*INFO* f_current_price4pmsi : 243.4743546076 
*INFO* f_1_step_time        : 11:29:48
*INFO* f_1_step_si          : 1.7528360537 
     previous_pred_les_level  : 248.0319694549
     previous_pred_les_trend  : -0.1689654131
     f_1_step_pred_les_level  : 244.1378139323
     f_1_step_pred_les_trend  : -0.1726906032
     f_1_step_pred_les        : 243.9651233291
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 243.9651233291
     f_1_step_pred_price_inc          : 427.6308640186
     f_1_step_pred_price              : 90526.6308640186
     f_1_step_pred_price_rounded      : 90500
     f_1_step_pred_set_price_rounded  : 90800
-------------------------------------------------
==>> Prediction Restuls in Python List :  [90800]
[90800]
<<<< Record No.:  2000 >>>>
2017-09
11:29:48
90700
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:48
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-09 11:29:48 
*INFO* f_current_si         : 1.7528360537 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 342.8729108627 
*INFO* f_1_step_time        : 11:29:49
*INFO* f_1_step_si          : 1.7901007887 
     previous_pred_les_level  : 244.1378139323
     previous_pred_les_trend  : -0.1726906032
     f_1_step_pred_les_level  : 327.9204078408
     f_1_step_pred_les_trend  : -0.0887353187
     f_1_step_pred_les        : 327.8316725221
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 327.8316725221
     f_1_step_pred_price_inc          : 586.8517355400
     f_1_step_pred_price              : 90685.8517355400
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]
<<<< Record No.:  2001 >>>>
2017-09
11:29:49
90700
==>> Forecasting   1 out of next   1 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:49
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-09 11:29:49 
*INFO* f_current_si         : 1.7901007887 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 335.7352858546 
*INFO* f_1_step_time        : 11:29:50
*INFO* f_1_step_si          : 1.9291876914 
     previous_pred_les_level  : 327.9204078408
     previous_pred_les_trend  : -0.0887353187
     f_1_step_pred_les_level  : 334.5404476605
     f_1_step_pred_les_trend  : -0.0820265436
     f_1_step_pred_les        : 334.4584211169
     f_1_step_pred_adj_misc   : 0.0000000000
     pred_les + pred_adj_misc : 334.4584211169
     f_1_step_pred_price_inc          : 645.2330692874
     f_1_step_pred_price              : 90744.2330692874
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000]
[91000]
In [10]:
    
# Upon receiving 11:29:50 second price, to predict till 11:30:00 <- ten-step forward price forecasting
for i in range(shl_sm_parm_ccyy_mm_offset+50, shl_sm_parm_ccyy_mm_offset+51): # use csv data as simulation
    print('\n<<<< Record No.: %5d >>>>' % i)
    print(shl_sm_data['ccyy-mm'][i]) # format: ccyy-mm
    print(shl_sm_data['time'][i]) # format: hh:mm:ss
    print(shl_sm_data['bid-price'][i]) # format: integer/boost-trap-float
    
######################################################################################################################    
#   call prediction function, returned result is in 'list' format, i.e. [89400, 89400, 89400, 89500, 89500, 89500, 89500, 89600, 89600, 89600]  
    shl_sm_prediction_list_local_k = shl_pm.shl_predict_price_k_step(shl_sm_data['time'][i], shl_sm_data['bid-price'][i],10) # <- ten-step forward price forecasting
    print(shl_sm_prediction_list_local_k)
######################################################################################################################
    
    
<<<< Record No.:  2002 >>>>
2017-09
11:29:50
90700
==>> Forecasting   1 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:50
in_current_price  : 90700.000000
*INFO* f_current_datetime   : 2017-09 11:29:50 
*INFO* f_current_si         : 1.9291876914 
*INFO* f_current_price4pm   : 601 
*INFO* f_current_price4pmsi : 311.5300821659 
*INFO* f_1_step_time        : 11:29:51
*INFO* f_1_step_si          : 1.9989322682 
*INFO* sec50_error          : 44.2330692874
*INFO* sec46_49_error       : -251.1874226613
*INFO* shl_global_parm_short_weight_misc  : -41.3908706748
*INFO* shl_global_parm_short_weight_ratio : 1
     previous_pred_les_level  : 334.5404476605
     previous_pred_les_trend  : -0.0820265436
     f_1_step_pred_les_level  : 314.9963012170
     f_1_step_pred_les_trend  : -0.1014886635
     f_1_step_pred_les        : 314.8948125535
     f_1_step_pred_adj_misc   : -0.7758174067
     pred_les + pred_adj_misc : 314.1189951468
     f_1_step_pred_price_inc          : 627.9025954669
     f_1_step_pred_price              : 90726.9025954669
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Forecasting   2 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:51
in_current_price  : 90726.902595
*INFO* f_current_datetime   : 2017-09 11:29:51 
*INFO* f_current_si         : 1.9989322682 
*INFO* f_current_price4pm   : 627 
*INFO* f_current_price4pmsi : 314.1189951468 
*INFO* f_1_step_time        : 11:29:52
*INFO* f_1_step_si          : 2.0656315104 
*INFO* shl_global_parm_short_weight_ratio : 2
     previous_pred_les_level  : 314.9963012170
     previous_pred_les_trend  : -0.1014886635
     f_1_step_pred_les_level  : 314.2362802707
     f_1_step_pred_les_trend  : -0.1021471958
     f_1_step_pred_les        : 314.1341330749
     f_1_step_pred_adj_misc   : -1.5516348134
     pred_les + pred_adj_misc : 312.5824982615
     f_1_step_pred_price_inc          : 645.6802580155
     f_1_step_pred_price              : 90744.6802580155
     f_1_step_pred_price_rounded      : 90700
     f_1_step_pred_set_price_rounded  : 91000
-------------------------------------------------
==>> Forecasting   3 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:52
in_current_price  : 90744.680258
*INFO* f_current_datetime   : 2017-09 11:29:52 
*INFO* f_current_si         : 2.0656315104 
*INFO* f_current_price4pm   : 645 
*INFO* f_current_price4pmsi : 312.5824982615 
*INFO* f_1_step_time        : 11:29:53
*INFO* f_1_step_si          : 2.1762324236 
*INFO* shl_global_parm_short_weight_ratio : 3
     previous_pred_les_level  : 314.2362802707
     previous_pred_les_trend  : -0.1021471958
     f_1_step_pred_les_level  : 312.8170685094
     f_1_step_pred_les_trend  : -0.1034642603
     f_1_step_pred_les        : 312.7136042490
     f_1_step_pred_adj_misc   : -2.3274522201
     pred_les + pred_adj_misc : 310.3861520289
     f_1_step_pred_price_inc          : 675.4724078803
     f_1_step_pred_price              : 90774.4724078803
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Forecasting   4 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:53
in_current_price  : 90774.472408
*INFO* f_current_datetime   : 2017-09 11:29:53 
*INFO* f_current_si         : 2.1762324236 
*INFO* f_current_price4pm   : 675 
*INFO* f_current_price4pmsi : 310.3861520289 
*INFO* f_1_step_time        : 11:29:54
*INFO* f_1_step_si          : 2.2959546949 
*INFO* shl_global_parm_short_weight_ratio : 4
     previous_pred_les_level  : 312.8170685094
     previous_pred_les_trend  : -0.1034642603
     f_1_step_pred_les_level  : 310.7380074007
     f_1_step_pred_les_trend  : -0.1054398572
     f_1_step_pred_les        : 310.6325675435
     f_1_step_pred_adj_misc   : -3.1032696268
     pred_les + pred_adj_misc : 307.5292979166
     f_1_step_pred_price_inc          : 706.0733353668
     f_1_step_pred_price              : 90805.0733353668
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Forecasting   5 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:54
in_current_price  : 90805.073335
*INFO* f_current_datetime   : 2017-09 11:29:54 
*INFO* f_current_si         : 2.2959546949 
*INFO* f_current_price4pm   : 706 
*INFO* f_current_price4pmsi : 307.5292979166 
*INFO* f_1_step_time        : 11:29:55
*INFO* f_1_step_si          : 2.4167518634 
*INFO* shl_global_parm_short_weight_ratio : 5
     previous_pred_les_level  : 310.7380074007
     previous_pred_les_trend  : -0.1054398572
     f_1_step_pred_les_level  : 307.9984384124
     f_1_step_pred_les_trend  : -0.1080739863
     f_1_step_pred_les        : 307.8903644260
     f_1_step_pred_adj_misc   : -3.8790870336
     pred_les + pred_adj_misc : 304.0112773925
     f_1_step_pred_price_inc          : 734.7198211334
     f_1_step_pred_price              : 90833.7198211334
     f_1_step_pred_price_rounded      : 90800
     f_1_step_pred_set_price_rounded  : 91100
-------------------------------------------------
==>> Forecasting   6 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:55
in_current_price  : 90833.719821
*INFO* f_current_datetime   : 2017-09 11:29:55 
*INFO* f_current_si         : 2.4167518634 
*INFO* f_current_price4pm   : 734 
*INFO* f_current_price4pmsi : 304.0112773925 
*INFO* f_1_step_time        : 11:29:56
*INFO* f_1_step_si          : 2.5507155017 
*INFO* shl_global_parm_short_weight_ratio : 6
     previous_pred_les_level  : 307.9984384124
     previous_pred_les_trend  : -0.1080739863
     f_1_step_pred_les_level  : 304.5977030121
     f_1_step_pred_les_trend  : -0.1113666477
     f_1_step_pred_les        : 304.4863363644
     f_1_step_pred_adj_misc   : -4.6549044403
     pred_les + pred_adj_misc : 299.8314319241
     f_1_step_pred_price_inc          : 764.7846813105
     f_1_step_pred_price              : 90863.7846813105
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Forecasting   7 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:56
in_current_price  : 90863.784681
*INFO* f_current_datetime   : 2017-09 11:29:56 
*INFO* f_current_si         : 2.5507155017 
*INFO* f_current_price4pm   : 764 
*INFO* f_current_price4pmsi : 299.8314319241 
*INFO* f_1_step_time        : 11:29:57
*INFO* f_1_step_si          : 2.7036260128 
*INFO* shl_global_parm_short_weight_ratio : 7
     previous_pred_les_level  : 304.5977030121
     previous_pred_les_trend  : -0.1113666477
     f_1_step_pred_les_level  : 300.5351426677
     f_1_step_pred_les_trend  : -0.1153178414
     f_1_step_pred_les        : 300.4198248263
     f_1_step_pred_adj_misc   : -5.4307218470
     pred_les + pred_adj_misc : 294.9891029793
     f_1_step_pred_price_inc          : 797.5402123158
     f_1_step_pred_price              : 90896.5402123158
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Forecasting   8 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:57
in_current_price  : 90896.540212
*INFO* f_current_datetime   : 2017-09 11:29:57 
*INFO* f_current_si         : 2.7036260128 
*INFO* f_current_price4pm   : 797 
*INFO* f_current_price4pmsi : 294.9891029793 
*INFO* f_1_step_time        : 11:29:58
*INFO* f_1_step_si          : 2.7679954159 
*INFO* shl_global_parm_short_weight_ratio : 8
     previous_pred_les_level  : 300.5351426677
     previous_pred_les_trend  : -0.1153178414
     f_1_step_pred_les_level  : 295.8100988468
     f_1_step_pred_les_trend  : -0.1199275674
     f_1_step_pred_les        : 295.6901712794
     f_1_step_pred_adj_misc   : -6.2065392537
     pred_les + pred_adj_misc : 289.4836320257
     f_1_step_pred_price_inc          : 801.2893664356
     f_1_step_pred_price              : 90900.2893664356
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Forecasting   9 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:58
in_current_price  : 90900.289366
*INFO* f_current_datetime   : 2017-09 11:29:58 
*INFO* f_current_si         : 2.7679954159 
*INFO* f_current_price4pm   : 801 
*INFO* f_current_price4pmsi : 289.4836320257 
*INFO* f_1_step_time        : 11:29:59
*INFO* f_1_step_si          : 2.9179195994 
*INFO* shl_global_parm_short_weight_ratio : 9
     previous_pred_les_level  : 295.8100988468
     previous_pred_les_trend  : -0.1199275674
     f_1_step_pred_les_level  : 290.4219130171
     f_1_step_pred_les_trend  : -0.1251958257
     f_1_step_pred_les        : 290.2967171914
     f_1_step_pred_adj_misc   : -6.9823566604
     pred_les + pred_adj_misc : 283.3143605310
     f_1_step_pred_price_inc          : 826.6885253928
     f_1_step_pred_price              : 90925.6885253928
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Forecasting  10 out of next  10 seconds/steps... 
+-----------------------------------------------+
| shl_predict_price_1_step()                    |
+-----------------------------------------------+
current_ccyy_mm   : 2017-09
in_current_time   : 11:29:59
in_current_price  : 90925.688525
*INFO* f_current_datetime   : 2017-09 11:29:59 
*INFO* f_current_si         : 2.9179195994 
*INFO* f_current_price4pm   : 826 
*INFO* f_current_price4pmsi : 283.3143605310 
*INFO* f_1_step_time        : 11:30:00
*INFO* f_1_step_si          : 3.0586081454 
*INFO* shl_global_parm_short_weight_ratio : 10
     previous_pred_les_level  : 290.4219130171
     previous_pred_les_trend  : -0.1251958257
     f_1_step_pred_les_level  : 284.3699266464
     f_1_step_pred_les_trend  : -0.1311226162
     f_1_step_pred_les        : 284.2388040302
     f_1_step_pred_adj_misc   : -7.7581740671
     pred_les + pred_adj_misc : 276.4806299631
     f_1_step_pred_price_inc          : 845.6459068442
     f_1_step_pred_price              : 90944.6459068442
     f_1_step_pred_price_rounded      : 90900
     f_1_step_pred_set_price_rounded  : 91200
-------------------------------------------------
==>> Prediction Restuls in Python List :  [91000, 91000, 91100, 91100, 91100, 91200, 91200, 91200, 91200, 91200]
[91000, 91000, 91100, 91100, 91100, 91200, 91200, 91200, 91200, 91200]
In [11]:
    
print(shl_sm_prediction_list_local_k)
    
    
[91000, 91000, 91100, 91100, 91100, 91200, 91200, 91200, 91200, 91200]
In [12]:
    
shl_pm.shl_data_pm_1_step.tail(11)
    
    Out[12]:
  
    
       
      ccyy-mm 
      f_1_step_pred_adj_misc 
      f_1_step_pred_les 
      f_1_step_pred_les_level 
      f_1_step_pred_les_trend 
      f_1_step_pred_price 
      f_1_step_pred_price_inc 
      f_1_step_pred_price_rounded 
      f_1_step_pred_set_price_rounded 
      f_1_step_si 
      f_1_step_time 
      f_current_bid 
      f_current_datetime 
      f_current_price4pm 
      f_current_price4pmsi 
      f_current_si 
     
  
  
    
      40 
      2017-09 
      0.000000 
      281.506425 
      281.642801 
      -0.136376 
      90411.709058 
      312.709058 
      90400.0 
      90700.0 
      1.110842 
      11:29:41 
      90400.0 
      2017-09 11:29:40 
      301.0 
      279.745938 
      1.075976 
     
    
      41 
      2017-09 
      0.000000 
      272.413897 
      272.559220 
      -0.145324 
      90416.635616 
      317.635616 
      90400.0 
      90700.0 
      1.166004 
      11:29:42 
      90400.0 
      2017-09 11:29:41 
      301.0 
      270.965716 
      1.110842 
     
    
      42 
      2017-09 
      0.000000 
      260.146119 
      260.303552 
      -0.157434 
      90431.099906 
      332.099906 
      90400.0 
      90700.0 
      1.276590 
      11:29:43 
      90400.0 
      2017-09 11:29:42 
      301.0 
      258.146690 
      1.166004 
     
    
      43 
      2017-09 
      0.000000 
      239.289211 
      239.467324 
      -0.178113 
      90431.421552 
      332.421552 
      90400.0 
      90700.0 
      1.389204 
      11:29:44 
      90400.0 
      2017-09 11:29:43 
      301.0 
      235.784414 
      1.276590 
     
    
      44 
      2017-09 
      0.000000 
      219.892876 
      220.090188 
      -0.197312 
      90416.858085 
      317.858085 
      90400.0 
      90700.0 
      1.445513 
      11:29:45 
      90400.0 
      2017-09 11:29:44 
      301.0 
      216.670826 
      1.389204 
     
    
      45 
      2017-09 
      0.000000 
      209.786383 
      209.993594 
      -0.207211 
      90429.101913 
      330.101913 
      90400.0 
      90700.0 
      1.573514 
      11:29:46 
      90400.0 
      2017-09 11:29:45 
      301.0 
      208.230524 
      1.445513 
     
    
      46 
      2017-09 
      0.000000 
      247.863004 
      248.031969 
      -0.168965 
      90507.228065 
      408.228065 
      90500.0 
      90800.0 
      1.646991 
      11:29:47 
      90500.0 
      2017-09 11:29:46 
      401.0 
      254.843539 
      1.573514 
     
    
      47 
      2017-09 
      0.000000 
      243.965123 
      244.137814 
      -0.172691 
      90526.630864 
      427.630864 
      90500.0 
      90800.0 
      1.752836 
      11:29:48 
      90500.0 
      2017-09 11:29:47 
      401.0 
      243.474355 
      1.646991 
     
    
      48 
      2017-09 
      0.000000 
      327.831673 
      327.920408 
      -0.088735 
      90685.851736 
      586.851736 
      90700.0 
      91000.0 
      1.790101 
      11:29:49 
      90700.0 
      2017-09 11:29:48 
      601.0 
      342.872911 
      1.752836 
     
    
      49 
      2017-09 
      0.000000 
      334.458421 
      334.540448 
      -0.082027 
      90744.233069 
      645.233069 
      90700.0 
      91000.0 
      1.929188 
      11:29:50 
      90700.0 
      2017-09 11:29:49 
      601.0 
      335.735286 
      1.790101 
     
    
      50 
      2017-09 
      -0.775817 
      314.894813 
      314.996301 
      -0.101489 
      90726.902595 
      627.902595 
      90700.0 
      91000.0 
      1.998932 
      11:29:51 
      90700.0 
      2017-09 11:29:50 
      601.0 
      311.530082 
      1.929188 
     
  
In [13]:
    
shl_pm.shl_data_pm_k_step.tail(20)
    
    Out[13]:
  
    
       
      ccyy-mm 
      f_1_step_pred_adj_misc 
      f_1_step_pred_les 
      f_1_step_pred_les_level 
      f_1_step_pred_les_trend 
      f_1_step_pred_price 
      f_1_step_pred_price_inc 
      f_1_step_pred_price_rounded 
      f_1_step_pred_set_price_rounded 
      f_1_step_si 
      f_1_step_time 
      f_current_bid 
      f_current_datetime 
      f_current_price4pm 
      f_current_price4pmsi 
      f_current_si 
     
  
  
    
      40 
      2017-09 
      0.000000 
      281.506425 
      281.642801 
      -0.136376 
      90411.709058 
      312.709058 
      90400.0 
      90700.0 
      1.110842 
      11:29:41 
      90400.000000 
      2017-09 11:29:40 
      301.000000 
      279.745938 
      1.075976 
     
    
      41 
      2017-09 
      0.000000 
      272.413897 
      272.559220 
      -0.145324 
      90416.635616 
      317.635616 
      90400.0 
      90700.0 
      1.166004 
      11:29:42 
      90400.000000 
      2017-09 11:29:41 
      301.000000 
      270.965716 
      1.110842 
     
    
      42 
      2017-09 
      0.000000 
      260.146119 
      260.303552 
      -0.157434 
      90431.099906 
      332.099906 
      90400.0 
      90700.0 
      1.276590 
      11:29:43 
      90400.000000 
      2017-09 11:29:42 
      301.000000 
      258.146690 
      1.166004 
     
    
      43 
      2017-09 
      0.000000 
      239.289211 
      239.467324 
      -0.178113 
      90431.421552 
      332.421552 
      90400.0 
      90700.0 
      1.389204 
      11:29:44 
      90400.000000 
      2017-09 11:29:43 
      301.000000 
      235.784414 
      1.276590 
     
    
      44 
      2017-09 
      0.000000 
      219.892876 
      220.090188 
      -0.197312 
      90416.858085 
      317.858085 
      90400.0 
      90700.0 
      1.445513 
      11:29:45 
      90400.000000 
      2017-09 11:29:44 
      301.000000 
      216.670826 
      1.389204 
     
    
      45 
      2017-09 
      0.000000 
      209.786383 
      209.993594 
      -0.207211 
      90429.101913 
      330.101913 
      90400.0 
      90700.0 
      1.573514 
      11:29:46 
      90400.000000 
      2017-09 11:29:45 
      301.000000 
      208.230524 
      1.445513 
     
    
      46 
      2017-09 
      0.000000 
      247.863004 
      248.031969 
      -0.168965 
      90507.228065 
      408.228065 
      90500.0 
      90800.0 
      1.646991 
      11:29:47 
      90500.000000 
      2017-09 11:29:46 
      401.000000 
      254.843539 
      1.573514 
     
    
      47 
      2017-09 
      0.000000 
      243.965123 
      244.137814 
      -0.172691 
      90526.630864 
      427.630864 
      90500.0 
      90800.0 
      1.752836 
      11:29:48 
      90500.000000 
      2017-09 11:29:47 
      401.000000 
      243.474355 
      1.646991 
     
    
      48 
      2017-09 
      0.000000 
      327.831673 
      327.920408 
      -0.088735 
      90685.851736 
      586.851736 
      90700.0 
      91000.0 
      1.790101 
      11:29:49 
      90700.000000 
      2017-09 11:29:48 
      601.000000 
      342.872911 
      1.752836 
     
    
      49 
      2017-09 
      0.000000 
      334.458421 
      334.540448 
      -0.082027 
      90744.233069 
      645.233069 
      90700.0 
      91000.0 
      1.929188 
      11:29:50 
      90700.000000 
      2017-09 11:29:49 
      601.000000 
      335.735286 
      1.790101 
     
    
      50 
      2017-09 
      -0.775817 
      314.894813 
      314.996301 
      -0.101489 
      90726.902595 
      627.902595 
      90700.0 
      91000.0 
      1.998932 
      11:29:51 
      90700.000000 
      2017-09 11:29:50 
      601.000000 
      311.530082 
      1.929188 
     
    
      51 
      2017-09 
      -1.551635 
      314.134133 
      314.236280 
      -0.102147 
      90744.680258 
      645.680258 
      90700.0 
      91000.0 
      2.065632 
      11:29:52 
      90726.902595 
      2017-09 11:29:51 
      627.902595 
      314.118995 
      1.998932 
     
    
      52 
      2017-09 
      -2.327452 
      312.713604 
      312.817069 
      -0.103464 
      90774.472408 
      675.472408 
      90800.0 
      91100.0 
      2.176232 
      11:29:53 
      90744.680258 
      2017-09 11:29:52 
      645.680258 
      312.582498 
      2.065632 
     
    
      53 
      2017-09 
      -3.103270 
      310.632568 
      310.738007 
      -0.105440 
      90805.073335 
      706.073335 
      90800.0 
      91100.0 
      2.295955 
      11:29:54 
      90774.472408 
      2017-09 11:29:53 
      675.472408 
      310.386152 
      2.176232 
     
    
      54 
      2017-09 
      -3.879087 
      307.890364 
      307.998438 
      -0.108074 
      90833.719821 
      734.719821 
      90800.0 
      91100.0 
      2.416752 
      11:29:55 
      90805.073335 
      2017-09 11:29:54 
      706.073335 
      307.529298 
      2.295955 
     
    
      55 
      2017-09 
      -4.654904 
      304.486336 
      304.597703 
      -0.111367 
      90863.784681 
      764.784681 
      90900.0 
      91200.0 
      2.550716 
      11:29:56 
      90833.719821 
      2017-09 11:29:55 
      734.719821 
      304.011277 
      2.416752 
     
    
      56 
      2017-09 
      -5.430722 
      300.419825 
      300.535143 
      -0.115318 
      90896.540212 
      797.540212 
      90900.0 
      91200.0 
      2.703626 
      11:29:57 
      90863.784681 
      2017-09 11:29:56 
      764.784681 
      299.831432 
      2.550716 
     
    
      57 
      2017-09 
      -6.206539 
      295.690171 
      295.810099 
      -0.119928 
      90900.289366 
      801.289366 
      90900.0 
      91200.0 
      2.767995 
      11:29:58 
      90896.540212 
      2017-09 11:29:57 
      797.540212 
      294.989103 
      2.703626 
     
    
      58 
      2017-09 
      -6.982357 
      290.296717 
      290.421913 
      -0.125196 
      90925.688525 
      826.688525 
      90900.0 
      91200.0 
      2.917920 
      11:29:59 
      90900.289366 
      2017-09 11:29:58 
      801.289366 
      289.483632 
      2.767995 
     
    
      59 
      2017-09 
      -7.758174 
      284.238804 
      284.369927 
      -0.131123 
      90944.645907 
      845.645907 
      90900.0 
      91200.0 
      3.058608 
      11:30:00 
      90925.688525 
      2017-09 11:29:59 
      826.688525 
      283.314361 
      2.917920 
     
  
In [ ]:
    
    
In [14]:
    
%matplotlib inline
import matplotlib.pyplot as plt
    
In [15]:
    
shl_data_pm_k_step_local = shl_pm.shl_data_pm_k_step.copy()
shl_data_pm_k_step_local.index = shl_data_pm_k_step_local.index + 1
shl_data_pm_k_step_local
    
    Out[15]:
  
    
       
      ccyy-mm 
      f_1_step_pred_adj_misc 
      f_1_step_pred_les 
      f_1_step_pred_les_level 
      f_1_step_pred_les_trend 
      f_1_step_pred_price 
      f_1_step_pred_price_inc 
      f_1_step_pred_price_rounded 
      f_1_step_pred_set_price_rounded 
      f_1_step_si 
      f_1_step_time 
      f_current_bid 
      f_current_datetime 
      f_current_price4pm 
      f_current_price4pmsi 
      f_current_si 
     
  
  
    
      1 
      2017-09 
      0.000000 
      425.008790 
      425.008790 
      0.000000 
      90107.878192 
      8.878192 
      90100.0 
      90400.0 
      0.020889 
      11:29:01 
      90100.000000 
      2017-09 11:29:00 
      1.000000 
      425.008790 
      0.002353 
     
    
      2 
      2017-09 
      0.000000 
      104.565213 
      104.885337 
      -0.320123 
      90102.716326 
      3.716326 
      90100.0 
      90400.0 
      0.035541 
      11:29:02 
      90100.000000 
      2017-09 11:29:01 
      1.000000 
      47.871095 
      0.020889 
     
    
      3 
      2017-09 
      0.000000 
      39.305886 
      39.690884 
      -0.384998 
      90100.646571 
      1.646571 
      90100.0 
      90400.0 
      0.041891 
      11:29:03 
      90100.000000 
      2017-09 11:29:02 
      1.000000 
      28.136714 
      0.035541 
     
    
      4 
      2017-09 
      0.000000 
      25.806598 
      26.204697 
      -0.398099 
      90100.270680 
      1.270680 
      90100.0 
      90400.0 
      0.049239 
      11:29:04 
      90100.000000 
      2017-09 11:29:03 
      1.000000 
      23.871365 
      0.041891 
     
    
      5 
      2017-09 
      0.000000 
      20.737583 
      21.140348 
      -0.402765 
      90100.013346 
      1.013346 
      90100.0 
      90400.0 
      0.048865 
      11:29:05 
      90100.000000 
      2017-09 11:29:04 
      1.000000 
      20.309285 
      0.049239 
     
    
      6 
      2017-09 
      0.000000 
      20.102755 
      20.505752 
      -0.402997 
      90100.642584 
      1.642584 
      90100.0 
      90400.0 
      0.081709 
      11:29:06 
      90100.000000 
      2017-09 11:29:05 
      1.000000 
      20.464463 
      0.048865 
     
    
      7 
      2017-09 
      0.000000 
      13.017713 
      13.427386 
      -0.409672 
      90100.277808 
      1.277808 
      90100.0 
      90400.0 
      0.098159 
      11:29:07 
      90100.000000 
      2017-09 11:29:06 
      1.000000 
      12.238497 
      0.081709 
     
    
      8 
      2017-09 
      0.000000 
      10.203317 
      10.615392 
      -0.412075 
      90100.427460 
      1.427460 
      90100.0 
      90400.0 
      0.139902 
      11:29:08 
      90100.000000 
      2017-09 11:29:07 
      1.000000 
      10.187537 
      0.098159 
     
    
      9 
      2017-09 
      0.000000 
      7.195126 
      7.609794 
      -0.414668 
      90100.459944 
      1.459944 
      90100.0 
      90400.0 
      0.202907 
      11:29:09 
      90100.000000 
      2017-09 11:29:08 
      1.000000 
      7.147885 
      0.139902 
     
    
      10 
      2017-09 
      0.000000 
      4.854447 
      5.271040 
      -0.416592 
      90100.151187 
      1.151187 
      90100.0 
      90400.0 
      0.237141 
      11:29:10 
      90100.000000 
      2017-09 11:29:09 
      1.000000 
      4.928359 
      0.202907 
     
    
      11 
      2017-09 
      0.000000 
      3.896154 
      4.313287 
      -0.417134 
      90100.140194 
      1.140194 
      90100.0 
      90400.0 
      0.292646 
      11:29:11 
      90100.000000 
      2017-09 11:29:10 
      1.000000 
      4.216906 
      0.237141 
     
    
      12 
      2017-09 
      0.000000 
      3.071979 
      3.489520 
      -0.417540 
      90100.047199 
      1.047199 
      90100.0 
      90400.0 
      0.340888 
      11:29:12 
      90100.000000 
      2017-09 11:29:11 
      1.000000 
      3.417098 
      0.292646 
     
    
      13 
      2017-09 
      0.000000 
      2.536793 
      2.954451 
      -0.417658 
      90099.906873 
      0.906873 
      90100.0 
      90400.0 
      0.357488 
      11:29:13 
      90100.000000 
      2017-09 11:29:12 
      1.000000 
      2.933519 
      0.340888 
     
    
      14 
      2017-09 
      0.000000 
      2.340479 
      2.757916 
      -0.417437 
      90099.879049 
      0.879049 
      90100.0 
      90400.0 
      0.375585 
      11:29:14 
      90100.000000 
      2017-09 11:29:13 
      1.000000 
      2.797298 
      0.357488 
     
    
      15 
      2017-09 
      0.000000 
      2.196666 
      2.613829 
      -0.417163 
      90099.887140 
      0.887140 
      90100.0 
      90400.0 
      0.403858 
      11:29:15 
      90100.000000 
      2017-09 11:29:14 
      1.000000 
      2.662513 
      0.375585 
     
    
      16 
      2017-09 
      0.000000 
      212.406156 
      212.612903 
      -0.206747 
      90188.875149 
      89.875149 
      90200.0 
      90500.0 
      0.423129 
      11:29:16 
      90200.000000 
      2017-09 11:29:15 
      101.000000 
      250.088202 
      0.403858 
     
    
      17 
      2017-09 
      0.000000 
      234.538903 
      234.723332 
      -0.184430 
      90207.216038 
      108.216038 
      90200.0 
      90500.0 
      0.461399 
      11:29:17 
      90200.000000 
      2017-09 11:29:16 
      101.000000 
      238.698039 
      0.423129 
     
    
      18 
      2017-09 
      0.000000 
      221.066041 
      221.263746 
      -0.197705 
      90207.110066 
      108.110066 
      90200.0 
      90500.0 
      0.489040 
      11:29:18 
      90200.000000 
      2017-09 11:29:17 
      101.000000 
      218.899430 
      0.461399 
     
    
      19 
      2017-09 
      0.000000 
      382.258172 
      382.294649 
      -0.036476 
      90293.221136 
      194.221136 
      90300.0 
      90600.0 
      0.508089 
      11:29:19 
      90300.000000 
      2017-09 11:29:18 
      201.000000 
      411.009592 
      0.489040 
     
    
      20 
      2017-09 
      0.000000 
      393.557932 
      393.583083 
      -0.025151 
      90307.135005 
      208.135005 
      90300.0 
      90600.0 
      0.528855 
      11:29:20 
      90300.000000 
      2017-09 11:29:19 
      201.000000 
      395.600059 
      0.508089 
     
    
      21 
      2017-09 
      0.000000 
      382.069485 
      382.106088 
      -0.036603 
      90314.854128 
      215.854128 
      90300.0 
      90600.0 
      0.564960 
      11:29:21 
      90300.000000 
      2017-09 11:29:20 
      201.000000 
      380.066506 
      0.528855 
     
    
      22 
      2017-09 
      0.000000 
      359.693004 
      359.751925 
      -0.058921 
      90305.967816 
      206.967816 
      90300.0 
      90600.0 
      0.575401 
      11:29:22 
      90300.000000 
      2017-09 11:29:21 
      201.000000 
      355.777150 
      0.564960 
     
    
      23 
      2017-09 
      0.000000 
      350.821642 
      350.889367 
      -0.067724 
      90304.647361 
      205.647361 
      90300.0 
      90600.0 
      0.586188 
      11:29:23 
      90300.000000 
      2017-09 11:29:22 
      201.000000 
      349.321432 
      0.575401 
     
    
      24 
      2017-09 
      0.000000 
      488.966500 
      488.896150 
      0.070350 
      90399.025194 
      300.025194 
      90400.0 
      90700.0 
      0.613590 
      11:29:24 
      90400.000000 
      2017-09 11:29:23 
      301.000000 
      513.487329 
      0.586188 
     
    
      25 
      2017-09 
      0.000000 
      490.386718 
      490.315019 
      0.071699 
      90418.825918 
      319.825918 
      90400.0 
      90700.0 
      0.652191 
      11:29:25 
      90400.000000 
      2017-09 11:29:24 
      301.000000 
      490.555192 
      0.613590 
     
    
      26 
      2017-09 
      0.000000 
      465.932071 
      465.884874 
      0.047197 
      90410.458696 
      311.458696 
      90400.0 
      90700.0 
      0.668464 
      11:29:26 
      90400.000000 
      2017-09 11:29:25 
      301.000000 
      461.521076 
      0.652191 
     
    
      27 
      2017-09 
      0.000000 
      452.685402 
      452.651485 
      0.033916 
      90410.327204 
      311.327204 
      90400.0 
      90700.0 
      0.687734 
      11:29:27 
      90400.000000 
      2017-09 11:29:26 
      301.000000 
      450.286203 
      0.668464 
     
    
      28 
      2017-09 
      0.000000 
      439.960401 
      439.939231 
      0.021170 
      90415.205265 
      316.205265 
      90400.0 
      90700.0 
      0.718713 
      11:29:28 
      90400.000000 
      2017-09 11:29:27 
      301.000000 
      437.669128 
      0.687734 
     
    
      29 
      2017-09 
      0.000000 
      422.005693 
      422.002481 
      0.003212 
      90408.193009 
      309.193009 
      90400.0 
      90700.0 
      0.732675 
      11:29:29 
      90400.000000 
      2017-09 11:29:28 
      301.000000 
      418.804161 
      0.718713 
     
    
      30 
      2017-09 
      0.000000 
      412.507590 
      412.513870 
      -0.006280 
      90418.030573 
      319.030573 
      90400.0 
      90700.0 
      0.773393 
      11:29:30 
      90400.000000 
      2017-09 11:29:29 
      301.000000 
      410.823369 
      0.732675 
     
    
      31 
      2017-09 
      0.000000 
      392.692391 
      392.718460 
      -0.026069 
      90408.726475 
      309.726475 
      90400.0 
      90700.0 
      0.788725 
      11:29:31 
      90400.000000 
      2017-09 11:29:30 
      301.000000 
      389.194000 
      0.773393 
     
    
      32 
      2017-09 
      0.000000 
      383.265526 
      383.300987 
      -0.035460 
      90410.597704 
      311.597704 
      90400.0 
      90700.0 
      0.813007 
      11:29:32 
      90400.000000 
      2017-09 11:29:31 
      301.000000 
      381.628370 
      0.788725 
     
    
      33 
      2017-09 
      0.000000 
      372.154423 
      372.200948 
      -0.046525 
      90408.738067 
      309.738067 
      90400.0 
      90700.0 
      0.832284 
      11:29:33 
      90400.000000 
      2017-09 11:29:32 
      301.000000 
      370.230338 
      0.813007 
     
    
      34 
      2017-09 
      0.000000 
      363.187267 
      363.242703 
      -0.055437 
      90412.054225 
      313.054225 
      90400.0 
      90700.0 
      0.861964 
      11:29:34 
      90400.000000 
      2017-09 11:29:33 
      301.000000 
      361.655519 
      0.832284 
     
    
      35 
      2017-09 
      0.000000 
      351.249491 
      351.316798 
      -0.067307 
      90421.907916 
      322.907916 
      90400.0 
      90700.0 
      0.919312 
      11:29:35 
      90400.000000 
      2017-09 11:29:34 
      301.000000 
      349.202658 
      0.861964 
     
    
      36 
      2017-09 
      0.000000 
      330.933831 
      331.021366 
      -0.087535 
      90413.162186 
      314.162186 
      90400.0 
      90700.0 
      0.949320 
      11:29:36 
      90400.000000 
      2017-09 11:29:35 
      301.000000 
      327.418721 
      0.919312 
     
    
      37 
      2017-09 
      0.000000 
      319.065709 
      319.165013 
      -0.099304 
      90411.156824 
      312.156824 
      90400.0 
      90700.0 
      0.978347 
      11:29:37 
      90400.000000 
      2017-09 11:29:36 
      301.000000 
      317.068977 
      0.949320 
     
    
      38 
      2017-09 
      0.000000 
      309.276946 
      309.385930 
      -0.108984 
      90408.114796 
      309.114796 
      90400.0 
      90700.0 
      0.999476 
      11:29:38 
      90400.000000 
      2017-09 11:29:37 
      301.000000 
      307.661953 
      0.978347 
     
    
      39 
      2017-09 
      0.000000 
      302.269425 
      302.385300 
      -0.115875 
      90412.017396 
      313.017396 
      90400.0 
      90700.0 
      1.035558 
      11:29:39 
      90400.000000 
      2017-09 11:29:38 
      301.000000 
      301.157893 
      0.999476 
     
    
      40 
      2017-09 
      0.000000 
      292.293304 
      292.419030 
      -0.125726 
      90413.500668 
      314.500668 
      90400.0 
      90700.0 
      1.075976 
      11:29:40 
      90400.000000 
      2017-09 11:29:39 
      301.000000 
      290.664666 
      1.035558 
     
    
      41 
      2017-09 
      0.000000 
      281.506425 
      281.642801 
      -0.136376 
      90411.709058 
      312.709058 
      90400.0 
      90700.0 
      1.110842 
      11:29:41 
      90400.000000 
      2017-09 11:29:40 
      301.000000 
      279.745938 
      1.075976 
     
    
      42 
      2017-09 
      0.000000 
      272.413897 
      272.559220 
      -0.145324 
      90416.635616 
      317.635616 
      90400.0 
      90700.0 
      1.166004 
      11:29:42 
      90400.000000 
      2017-09 11:29:41 
      301.000000 
      270.965716 
      1.110842 
     
    
      43 
      2017-09 
      0.000000 
      260.146119 
      260.303552 
      -0.157434 
      90431.099906 
      332.099906 
      90400.0 
      90700.0 
      1.276590 
      11:29:43 
      90400.000000 
      2017-09 11:29:42 
      301.000000 
      258.146690 
      1.166004 
     
    
      44 
      2017-09 
      0.000000 
      239.289211 
      239.467324 
      -0.178113 
      90431.421552 
      332.421552 
      90400.0 
      90700.0 
      1.389204 
      11:29:44 
      90400.000000 
      2017-09 11:29:43 
      301.000000 
      235.784414 
      1.276590 
     
    
      45 
      2017-09 
      0.000000 
      219.892876 
      220.090188 
      -0.197312 
      90416.858085 
      317.858085 
      90400.0 
      90700.0 
      1.445513 
      11:29:45 
      90400.000000 
      2017-09 11:29:44 
      301.000000 
      216.670826 
      1.389204 
     
    
      46 
      2017-09 
      0.000000 
      209.786383 
      209.993594 
      -0.207211 
      90429.101913 
      330.101913 
      90400.0 
      90700.0 
      1.573514 
      11:29:46 
      90400.000000 
      2017-09 11:29:45 
      301.000000 
      208.230524 
      1.445513 
     
    
      47 
      2017-09 
      0.000000 
      247.863004 
      248.031969 
      -0.168965 
      90507.228065 
      408.228065 
      90500.0 
      90800.0 
      1.646991 
      11:29:47 
      90500.000000 
      2017-09 11:29:46 
      401.000000 
      254.843539 
      1.573514 
     
    
      48 
      2017-09 
      0.000000 
      243.965123 
      244.137814 
      -0.172691 
      90526.630864 
      427.630864 
      90500.0 
      90800.0 
      1.752836 
      11:29:48 
      90500.000000 
      2017-09 11:29:47 
      401.000000 
      243.474355 
      1.646991 
     
    
      49 
      2017-09 
      0.000000 
      327.831673 
      327.920408 
      -0.088735 
      90685.851736 
      586.851736 
      90700.0 
      91000.0 
      1.790101 
      11:29:49 
      90700.000000 
      2017-09 11:29:48 
      601.000000 
      342.872911 
      1.752836 
     
    
      50 
      2017-09 
      0.000000 
      334.458421 
      334.540448 
      -0.082027 
      90744.233069 
      645.233069 
      90700.0 
      91000.0 
      1.929188 
      11:29:50 
      90700.000000 
      2017-09 11:29:49 
      601.000000 
      335.735286 
      1.790101 
     
    
      51 
      2017-09 
      -0.775817 
      314.894813 
      314.996301 
      -0.101489 
      90726.902595 
      627.902595 
      90700.0 
      91000.0 
      1.998932 
      11:29:51 
      90700.000000 
      2017-09 11:29:50 
      601.000000 
      311.530082 
      1.929188 
     
    
      52 
      2017-09 
      -1.551635 
      314.134133 
      314.236280 
      -0.102147 
      90744.680258 
      645.680258 
      90700.0 
      91000.0 
      2.065632 
      11:29:52 
      90726.902595 
      2017-09 11:29:51 
      627.902595 
      314.118995 
      1.998932 
     
    
      53 
      2017-09 
      -2.327452 
      312.713604 
      312.817069 
      -0.103464 
      90774.472408 
      675.472408 
      90800.0 
      91100.0 
      2.176232 
      11:29:53 
      90744.680258 
      2017-09 11:29:52 
      645.680258 
      312.582498 
      2.065632 
     
    
      54 
      2017-09 
      -3.103270 
      310.632568 
      310.738007 
      -0.105440 
      90805.073335 
      706.073335 
      90800.0 
      91100.0 
      2.295955 
      11:29:54 
      90774.472408 
      2017-09 11:29:53 
      675.472408 
      310.386152 
      2.176232 
     
    
      55 
      2017-09 
      -3.879087 
      307.890364 
      307.998438 
      -0.108074 
      90833.719821 
      734.719821 
      90800.0 
      91100.0 
      2.416752 
      11:29:55 
      90805.073335 
      2017-09 11:29:54 
      706.073335 
      307.529298 
      2.295955 
     
    
      56 
      2017-09 
      -4.654904 
      304.486336 
      304.597703 
      -0.111367 
      90863.784681 
      764.784681 
      90900.0 
      91200.0 
      2.550716 
      11:29:56 
      90833.719821 
      2017-09 11:29:55 
      734.719821 
      304.011277 
      2.416752 
     
    
      57 
      2017-09 
      -5.430722 
      300.419825 
      300.535143 
      -0.115318 
      90896.540212 
      797.540212 
      90900.0 
      91200.0 
      2.703626 
      11:29:57 
      90863.784681 
      2017-09 11:29:56 
      764.784681 
      299.831432 
      2.550716 
     
    
      58 
      2017-09 
      -6.206539 
      295.690171 
      295.810099 
      -0.119928 
      90900.289366 
      801.289366 
      90900.0 
      91200.0 
      2.767995 
      11:29:58 
      90896.540212 
      2017-09 11:29:57 
      797.540212 
      294.989103 
      2.703626 
     
    
      59 
      2017-09 
      -6.982357 
      290.296717 
      290.421913 
      -0.125196 
      90925.688525 
      826.688525 
      90900.0 
      91200.0 
      2.917920 
      11:29:59 
      90900.289366 
      2017-09 11:29:58 
      801.289366 
      289.483632 
      2.767995 
     
    
      60 
      2017-09 
      -7.758174 
      284.238804 
      284.369927 
      -0.131123 
      90944.645907 
      845.645907 
      90900.0 
      91200.0 
      3.058608 
      11:30:00 
      90925.688525 
      2017-09 11:29:59 
      826.688525 
      283.314361 
      2.917920 
     
  
In [16]:
    
# bid is predicted bid-price from shl_pm
plt.figure(figsize=(12,6))
plt.plot(shl_pm.shl_data_pm_k_step['f_current_bid'])
# plt.plot(shl_data_pm_1_step_k_step['f_1_step_pred_price'].shift(1))
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])
# bid is actual bid-price from raw dataset
shl_data_actual_bid_local = shl_sm_data[shl_sm_parm_ccyy_mm_offset:shl_sm_parm_ccyy_mm_offset+61].copy()
shl_data_actual_bid_local.reset_index(inplace=True)
plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price'])
plt.figure(figsize=(12,6))
plt.plot(shl_data_actual_bid_local['bid-price'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_price_rounded'])
plt.plot(shl_data_pm_k_step_local['f_1_step_pred_set_price_rounded'])
    
    Out[16]:
[<matplotlib.lines.Line2D at 0x7f31066f5240>]
    
 
    
 
    
 
In [17]:
    
print('Dynamic Increment : +%d' % shl_pm.shl_global_parm_dynamic_increment)
    
    
Dynamic Increment : +300
In [18]:
    
# pd.concat([shl_data_actual_bid_local['bid-price'], shl_data_pm_k_step_local['f_1_step_pred_price'], shl_data_pm_k_step_local['f_1_step_pred_price'] - shl_data_actual_bid_local['bid-price']], axis=1, join='inner')
pd.concat([shl_data_actual_bid_local['bid-price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11), shl_data_pm_k_step_local['f_1_step_pred_price'].tail(11) - shl_data_actual_bid_local['bid-price'].tail(11)], axis=1, join='inner')
    
    Out[18]:
  
    
       
      bid-price 
      f_1_step_pred_price 
      0 
     
  
  
    
      50 
      90700 
      90744.233069 
      44.233069 
     
    
      51 
      90700 
      90726.902595 
      26.902595 
     
    
      52 
      90700 
      90744.680258 
      44.680258 
     
    
      53 
      90800 
      90774.472408 
      -25.527592 
     
    
      54 
      90800 
      90805.073335 
      5.073335 
     
    
      55 
      90800 
      90833.719821 
      33.719821 
     
    
      56 
      90900 
      90863.784681 
      -36.215319 
     
    
      57 
      91000 
      90896.540212 
      -103.459788 
     
    
      58 
      91000 
      90900.289366 
      -99.710634 
     
    
      59 
      91200 
      90925.688525 
      -274.311475 
     
    
      60 
      91300 
      90944.645907 
      -355.354093 
     
  
Content source: telescopeuser/uat_shl
Similar notebooks: